Abstract

In this report, we present our studies on mRNA, which was modified by introducing various halogen substituents at the C(5) position of the pyrimidine base. Specifically, we synthesized C(5)-halogenated (F, Cl, Br, I) pyrimidine ribonucleoside triphosphates and incorporated them into mRNA during in-vitro transcription. The efficiency of the in-vitro transcription reaction of halogenated pyrimidine was observed to decrease as the size of the halogen substituent increased and the electronegativity thereof decreased (F > Cl > Br) except for iodine. Interestingly, we found that, among the C(5)-halogenated pyrimidine ribonucleotides, mRNA incorporating C(5)-halogenated cytidine (5-F rCTP and 5-Cl rCTP) exhibited more prominent protein expression than mRNA modified with C(5)-halogenated uridine and unmodified mRNA. In particular, in the case of mRNA to which fluorine (5-F rCTP) and chlorine (5-Cl rCTP) were introduced, the protein was dramatically expressed about 4 to 5 times more efficiently than the unmodified mRNA, which was similar to pseudouridine (ψ). More interestingly, when pseudouridine(ψ) and fluorocytidine nucleotides (5-F rCTP), were simultaneously introduced into mRNA for dual incorporation, the protein expression efficiency dramatically increased as much as tenfold. The efficiency of cap-dependent protein expression is much higher than the IRES-dependent (internal ribosome entry site) expression with mRNA incorporating C(5)-halogenated pyrimidine ribonucleotide. We expect these results to contribute meaningfully to the development of therapeutics based on modified mRNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call