Abstract
Calmodulin (CALM), a calcium-binding protein, is expressed in the hypothalamic-pituitary-gonadal axis; it plays a pivotal role in the reproductive system by regulating gonadotropin-releasing hormone signaling. Downstream of hypothalamic-pituitary-gonadal signaling pathways, liver receptor homolog-1 (LRH-1) is involved in female gonadal hormone synthesis. In the chicken, although the two genes are known to be associated with reproductive traits, the interaction between gonadotropins and gonadal steroids remains unclear. We used quantitative real-time PCR to quantify the tissular (hypothalamus, pituitary, ovary, liver, kidney, oviduct, heart) and ontogenetic (12, 18, 32, and 45 weeks) mRNA expression profiles of CALM and LRH-1 in Erlang Mountainous chickens to determine their roles in the endocrine control of fertility, and compared these profiles with expression in Roman chickens. We found that the relative expressions of CALM and LRH-1 genes had the highest levels in the pituitary and ovary at 32 weeks. The expression level of CALM mRNA in the pituitary of Roman chickens was significantly higher than that in Erlang Mountainous chickens at 32 and 45 weeks, while the LRH-1 transcript level in the ovaries of Roman chickens was significantly lower than that of Erlang Mountainous chickens at 32 and 45 weeks. In summary, the transcript levels of CALM and LRH-1 genes are associated with chicken reproductive traits; in addition, we found that the CALM gene is the key regulator in the hypothalamic-pituitary-gonadal signaling network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.