Abstract
The emergence of new influenza virus strains presents a continuous challenge for global public health. mRNA technology offers a promising platform for rapidly developing therapeutics, particularly monoclonal antibodies, that can protect against viral infections. In this study, we engineered mRNA constructs encoding two types of antibodies: secreted antibodies specific to the hemagglutinin of the influenza A virus, based on previously characterized Fi6 antibodies, and intracellular Fab fragments targeting the nucleoprotein of the influenza B virus, derived from the 2/3 antibodies. The administration of mRNA constructs in vitro resulted in the successful synthesis of functional antibodies, which exhibited antiviral activity against influenza viruses. This study confirms the feasibility of using mRNA technology to develop therapeutic antibodies against influenza virus infections. The findings pave the way for future clinical applications of mRNA-based therapeutics, enhancing preparedness for emerging viral threats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.