Abstract

Voice cloning in text-to-speech (TTS) is the process of replicating the voice of a target speaker with limited data. Among various voice cloning techniques, this article focuses on zero-shot voice cloning. Although existing TTS models can generate high-quality speech for seen speakers, cloning the voice of an unseen speaker remains a challenging task. The key aspect of zero-shot voice cloning is to obtain a speaker embedding from the target speaker. Previous works have used a speaker encoder to obtain a fixed-size speaker embedding from a single reference audio unsupervised, but they suffer from insufficient speaker information and content information leakage in speaker embedding. To address these issues, this article proposes MRMI-TTS, a FastSpeech2-based framework that uses speaker embedding as a conditioning variable to provide speaker information. The MRMI-TTS extracts speaker embedding and content embedding from multi-reference audios using a speaker encoder and a content encoder. To obtain sufficient speaker information, multi-reference audios are selected based on sentence similarity. The proposed model applies mutual information minimization on the two embeddings to remove entangled information within each embedding. Experiments on the public English dataset VCTK show that our method can improve synthesized speech in terms of both similarity and naturalness, even for unseen speakers. Compared to state-of-the-art reference embedding learned methods, our method achieves the best performance on the zero-shot voice cloning task. Furthermore, we demonstrate that the proposed method has a better capability of maintaining the speaker embedding in different languages. Sample outputs are available on the demo page. 1

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.