Abstract
Medical image segmentation is a critical task for clinical diagnosis and research. However, dealing with highly imbalanced data remains a significant challenge in this domain, where the region of interest (ROI) may exhibit substantial variations across different slices. This presents a significant hurdle to medical image segmentation, as conventional segmentation methods may either overlook the minority class or overly emphasize the majority class, ultimately leading to a decrease in the overall generalization ability of the segmentation results. To overcome this, we propose a novel approach based on multi-step reinforcement learning, which integrates prior knowledge of medical images and pixel-wise segmentation difficulty into the reward function. Our method treats each pixel as an individual agent, utilizing diverse actions to evaluate its relevance for segmentation. To validate the effectiveness of our approach, we conduct experiments on four imbalanced medical datasets, and the results show that our approach surpasses other state-of-the-art methods in highly imbalanced scenarios. These findings hold substantial implications for clinical diagnosis and research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.