Abstract

To investigate the effect of radiomics in the assessment of alterations in canonical cancer pathways in breast cancer. Eighty-eight biopsy-proven breast cancer cases were included in the present study. Radiomics features were extracted from T1-weighted sagittal dynamic contrast-enhanced magnetic resonance imaging (MRI) images. Radiomics signatures were developed to predict genetic alterations in the cell cycle, Myc, PI3K, RTK/RAS, and p53 signalling pathways by using hypothesis testing combined with least absolute shrinkage and selection operator (LASSO) regression analysis. The predictive powers of the models were examined by the area under the curve (AUC) of the receiver operating characteristic curve. A total of 5,234 radiomics features were obtained from MRI images based on the tumour region of interest. Hypothesis tests screened 250, 229, 156, 785, and 319 radiomics features that were differentially displayed between cell cycle, Myc, PI3K, RTK/RAS, and p53 alterations and no alteration status. According to the LASSO algorithm, 11, 12, 12, 15, and 13 features were identified for the construction of the radiomics signatures to predict cell cycle, Myc, PI3K, RTK/RAS, and p53 alterations, with AUC values of 0.933, 0.926, 0.956, 0.940, and 0.886, respectively. The cell cycle radiomics score correlated closely with the RTK/RAS and p53 radiomics scores. These signatures were also dysregulated in patients with different oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 statuses. MRI-based radiogenomics analysis exhibits excellent performance in predicting genetic pathways alterations, thus providing a novel approach for non-invasively obtaining genetic-level molecular characteristics of tumours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.