Abstract
This paper presents a segmentation technique to identify the medial axis and the boundary of cranial nerves. We utilize a 3-D deformable one-simplex discrete contour model to extract the medial axis of each cranial nerve. This contour model represents a collection of two-connected vertices linked by edges, where vertex position is determined by a Newtonian expression for vertex kinematics featuring internal and external forces, the latter of which include attractive forces toward the nerve medial axis. We exploit multiscale vesselness filtering and minimal path techniques in the medial axis extraction method, which also computes a radius estimate along the path. Once we have the medial axis and the radius function of a nerve, we identify the nerve surface using a two-simplex deformable model, which expands radially and can accommodate any nerve shape. As a result, the method proposed here combines the benefits of explicit contour and surface models, while also achieving a cornerstone for future work that will emphasize shape statistics, static collision with other critical structures, and tree-shape analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.