Abstract

IntroductionBoth Hip Dysplasia(DDH) and Femoro-acetabular-Impingement(FAI) are complex three-dimensional hip pathologies causing hip pain and osteoarthritis in young patients. 3D-MRI-based models were used for radiation-free computer-assisted surgical planning. Automatic segmentation of MRI-based 3D-models are preferred because manual segmentation is time-consuming.To investigate(1) the difference and(2) the correlation for femoral head coverage(FHC) between automatic MR-based and manual CT-based 3D-models and (3) feasibility of preoperative planning in symptomatic patients with hip diseases. MethodsWe performed an IRB-approved comparative, retrospective study of 31 hips(26 symptomatic patients with hip dysplasia or FAI). 3D MRI sequences and CT scans of the hip were acquired. Preoperative MRI included axial-oblique T1 VIBE sequence(0.8 mm3 isovoxel) of the hip joint. Manual segmentation of MRI and CT scans were performed. Automatic segmentation of MRI-based 3D-models was performed using deep learning. Results(1)The difference between automatic and manual segmentation of MRI-based 3D hip joint models was below 1 mm(proximal femur 0.2 ± 0.1 mm and acetabulum 0.3 ± 0.5 mm). Dice coefficients of the proximal femur and the acetabulum were 98 % and 97 %, respectively. (2)The correlation for total FHC was excellent and significant(r = 0.975, p < 0.001) between automatic MRI-based and manual CT-based 3D-models. Correlation for total FHC (r = 0.979, p < 0.001) between automatic and manual MR-based 3D models was excellent.(3)Preoperative planning and simulation of periacetabular osteotomy was feasible in all patients(100 %) with hip dysplasia or acetabular retroversion. ConclusionsAutomatic segmentation of MRI-based 3D-models using deep learning is as accurate as CT-based 3D-models for patients with hip diseases of childbearing age. This allows radiation-free and patient-specific preoperative simulation and surgical planning of periacetabular osteotomy for patients with DDH.

Highlights

  • Both Hip Dysplasia(DDH) and Femoro-acetabular-Impingement(FAI) are complex three-dimensional hip pathologies causing hip pain and osteoarthritis in young patients. 3D-MRI-based models were used for radiation-free computer-assisted surgical planning

  • DDH is characterized by a Abbreviations: DDH, developmental dysplasia of the hip; Femoroacetabular impingement (FAI), Femoroacetabular Impingement; ROM, range of motion; FHC, femoral head center; DOC, Dice Overlap Coefficients; ASD, Average Surface Distance; GPU, Graphics processing unit

  • Following IRB-approval we performed a comparative, retrospective study of a series of 31 hips from 26 symptomatic patients with FAI or DDH who presented at our university centre for hip preservation be­ tween 03/2016 and 02/2017

Read more

Summary

Introduction

Both Hip Dysplasia(DDH) and Femoro-acetabular-Impingement(FAI) are complex three-dimensional hip pathologies causing hip pain and osteoarthritis in young patients. 3D-MRI-based models were used for radiation-free computer-assisted surgical planning. To investigate(1) the difference and(2) the correlation for femoral head coverage(FHC) between automatic MRbased and manual CT-based 3D-models and (3) feasibility of preoperative planning in symptomatic patients with hip diseases. Results: (1)The difference between automatic and manual segmentation of MRI-based 3D hip joint models was below 1 mm(proximal femur 0.2 ± 0.1 mm and acetabulum 0.3 ± 0.5 mm). Conclusions: Automatic segmentation of MRI-based 3D-models using deep learning is as accurate as CT-based 3Dmodels for patients with hip diseases of childbearing age. This allows radiation-free and patient-specific pre­ operative simulation and surgical planning of periacetabular osteotomy for patients with DDH. 2D radiographs are not specific and cannot visualize the exact location of the deformity [7]

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call