Abstract
To evaluate MRI texture analysis in differentiating clinicopathological characteristics of cervical carcinoma (CC). Patients with newly diagnosed CC who underwent pre-treatment MRI were retrospectively reviewed. Texture analysis was performed using commercial software (TexRAD). Largest single-slice ROIs were manually drawn around the tumour on T2-weighted (T2W) images, apparent diffusion coefficient (ADC) maps and contrast-enhanced T1-weighted (T1c) images. First-order texture features were calculated and compared among histological subtypes, tumour grades, FIGO stages and nodal status using the Mann-Whitney U test. Feature selection was achieved by elastic net. Selected features from different sequences were used to build the multivariable support vector machine (SVM) models and the performances were assessed by ROC curves and AUC. Ninety-five patients with FIGO stage IB~IVB were evaluated. A number of texture features from multiple sequences were significantly different among all the clinicopathological subgroups (p < 0.05). Texture features from different sequences were selected to build the SVM models. The AUCs of SVM models for discriminating histological subtypes, tumour grades, FIGO stages and nodal status were 0.841, 0.850, 0.898 and 0.879, respectively. Texture features derived from multiple sequences were helpful in differentiating the clinicopathological signatures of CC. The SVM models with selected features from different sequences offered excellent diagnostic discrimination of the tumour characteristics in CC. • First-order texture features are able to differentiate clinicopathological signatures of cervical carcinoma. • Combined texture features from different sequences can offer excellent diagnostic discrimination of the tumour characteristics in cervical carcinoma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.