Abstract
Currently, prostate cancer (PCa) prebiopsy medical image diagnosis mainly relies on mpMRI and PI-RADS scores. However, PI-RADS has its limitations, such as inter- and intra-radiologist variability and the potential for imperceptible features. The primary objective of this study is to evaluate the effectiveness of a machine learning model based on radiomics analysis of MRI T2-weighted (T2w) images for predicting PCa in prebiopsy cases. A retrospective analysis was conducted using 820 lesions (363 cases, 457 controls) from The Cancer Imaging Archive (TCIA) Database for model development and validation. An additional 83 lesions (30 cases, 53 controls) from Hong Kong Queen Mary Hospital were used for independent external validation. The MRI T2w images were preprocessed, and radiomic features were extracted. Feature selection was performed using Cross Validation Least Angle Regression (CV-LARS). Using three different machine learning algorithms, a total of 18 prediction models and 3 shape control models were developed. The performance of the models, including the area under the curve (AUC) and diagnostic values such as sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), were compared to the PI-RADS scoring system for both internal and external validation. All the models showed significant differences compared to the shape control model (all p < 0.001, except SVM model PI-RADS+2 Features p = 0.004, SVM model PI-RADS+3 Features p = 0.002). In internal validation, the best model, based on the LR algorithm, incorporated 3 radiomic features (AUC = 0.838, sensitivity = 76.85%, specificity = 77.36%). In external validation, the LR (3 features) model outperformed PI-RADS in predictive value with AUC 0.870 vs. 0.658, sensitivity 56.67% vs. 46.67%, specificity 92.45% vs. 84.91%, PPV 80.95% vs. 63.64%, and NPV 79.03% vs. 73.77%. The machine learning model based on radiomics analysis of MRI T2w images, along with simulated biopsy, provides additional diagnostic value to the PI-RADS scoring system in predicting PCa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.