Abstract

Capillary pressure is an important parameter to characterize the core properties in CO2 geological storage applications, and it is necessary to study the CO2 drainage behavior to predict the potential and ensure the safety of storage. In this work, we conducted CO2 drainage experiments in two types of sandstone cores (Berea sandstone and synthetic sandstone) under reservoir conditions (800 m underground) and measured the capillary pressure using an MRI system. The drainage experiments were repeated in a capillary number range from 5.22 × 10−9 to 5.5 × 10−7 by varying the injection rate. The entry pressure and pore size distribution index were calculated by fitting a straight line on a log-log curve of the effective saturation versus capillary pressure. Relative permeability curves were plotted using the calculated entry pressure and pore size distribution index. The curves were consistent with the properties of the sandstone cores. The capillary desaturation curves gave the irreducible brine saturations for different permeability, wettability, injection pressure and injection direction conditions as a function of capillary number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.