Abstract

Magnetic resonance imaging (MRI) is an imaging modality widely used in clinical practice. The use of MRI for imaging of the thorax, however, has been historically considered of limited value, despite the effort of physicists and radiologists to obtain positive and reproducible results in several studies. MRI plays a role in the assessment of cardiovascular disease, mediastinal lesions and abnormalities of the brachial plexus and chest wall. However, clinical indications are restricted to specific conditions, generally as a problem-solving technique. Continuous motion from cardiac and vascular pulsation and respiratory motion are one of the major challenges in MRI of the chest as they severely affect imaging quality. A significant limitation of thoracic MRI is imaging of the lung due to intrinsic characteristics of the pulmonary tissue and the presence of physiologic motion. The low proton density of the lung parenchyma generates low signal intensity and low signal-to-noise ratio when compared to other parts of the body. Furthermore, susceptibility artifacts at tissue-air and liquid-air interfaces of the alveoli greatly affect signal intensity (1,2) . In more recent years, however, MRI has evolved

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.