Abstract

PurposeThis study aims to evaluate the effect of dimercaptosuccinic acid (DMSA)-coated superparamagnetic iron oxide (γ-Fe2O3@DMSA) bearing the 2-deoxy-d-glucose (2-DG) ligand on targeting tumors with high-glucose metabolism.Proceduresγ-Fe2O3@DMSA and 2-DG-conjugated γ-Fe2O3@DMSA (γ-Fe2O3@DMSA-DG) were prepared. The glucose consumption of MDA-MB-231 and MCF-7 breast cancer cells and human mammary epithelial cells (HMEpiCs) was assessed. Cells were incubated with γ-Fe2O3@DMSA or γ-Fe2O3@DMSA-DG, and MDA-MB-231 cells which exhibited the highest glucose consumption were used in breast cancer xenografts. Tumor targeting was studied by magnetic resonance imaging and Prussian blue staining in vivo.ResultsGlucose consumption was highest in MDA-MB-231 and lowest in HMEpiCs. In vitro, there was significant uptake of γ-Fe2O3@DMSA-DG by MDA-MB-231 and MCF-7 cells within 2 h and this was inhibited by glucose. Uptake of γ-Fe2O3@DMSA-DG was significantly higher in MDA-MB-231 compared with MCF-7 cells, and there was no obvious uptake of γ-Fe2O3@DMSA in either cell line. In vivo, γ-Fe2O3@DMSA-DG could be detected in the liver and in tumors post-injection, while γ-Fe2O3@DMSA was nearly undetectable in tumors.Conclusions2-DG-coated γ-Fe2O3@DMSA improved tumor targeting of γ-Fe2O3@DMSA which can be assessed by magnetic resonance imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.