Abstract
SummaryBackgroundIn patients with chronic spinal cord injury, imaging of the spinal cord and brain above the level of the lesion provides evidence of neural degeneration; however, the spatial and temporal patterns of progression and their relation to clinical outcomes are uncertain. New interventions targeting acute spinal cord injury have entered clinical trials but neuroimaging outcomes as responsive markers of treatment have yet to be established. We aimed to use MRI to assess neuronal degeneration above the level of the lesion after acute spinal cord injury.MethodsIn our prospective longitudinal study, we enrolled patients with acute traumatic spinal cord injury and healthy controls. We assessed patients clinically and by MRI at baseline, 2 months, 6 months, and 12 months, and controls by MRI at the same timepoints. We assessed atrophy in white matter in the cranial corticospinal tracts and grey matter in sensorimotor cortices by tensor-based analyses of T1-weighted MRI data. We used cross-sectional spinal cord area measurements to assess atrophy at cervical level C2/C3. We used myelin-sensitive magnetisation transfer (MT) and longitudinal relaxation rate (R1) maps to assess microstructural changes associated with myelin. We also assessed associations between MRI parameters and clinical improvement. All analyses of brain scans done with statistical parametric mapping were corrected for family-wise error.FindingsBetween Sept 17, 2010, and Dec 31, 2012, we recruited 13 patients and 18 controls. In the 12 months from baseline, patients recovered by a mean of 5·27 points per log month (95% CI 1·91–8·63) on the international standards for the neurological classification of spinal cord injury (ISNCSCI) motor score (p=0·002) and by 10·93 points per log month (6·20–15·66) on the spinal cord independence measure (SCIM) score (p<0·0001). Compared with controls, patients showed a rapid decline in cross-sectional spinal cord area (patients declined by 0·46 mm per month compared with a stable cord area in controls; p<0·0001). Patients had faster rates than controls of volume decline of white matter in the cranial corticospinal tracts at the level of the internal capsule (right Z score 5·21, p=0·0081; left Z score 4·12, p=0·0004) and right cerebral peduncle (Z score 3·89, p=0·0302) and of grey matter in the left primary motor cortex (Z score 4·23, p=0·041). Volume changes were paralleled by significant reductions of MT and R1 in the same areas and beyond. Improvements in SCIM scores at 12 months were associated with a reduced loss in cross-sectional spinal cord area over 12 months (Pearson's correlation 0·77, p=0·004) and reduced white matter volume of the corticospinal tracts at the level of the right internal capsule (Z score 4·30, p=0·0021), the left internal capsule (Z score 4·27, p=0·0278), and left cerebral peduncle (Z score 4·05, p=0·0316). Improvements in ISNCSCI motor scores were associated with less white matter volume change encompassing the corticospinal tract at the level of the right internal capsule (Z score 4·01, p<0·0001).InterpretationExtensive upstream atrophic and microstructural changes of corticospinal axons and sensorimotor cortical areas occur in the first months after spinal cord injury, with faster degenerative changes relating to poorer recovery. Structural volumetric and microstructural MRI protocols remote from the site of spinal cord injury could serve as neuroimaging biomarkers in acute spinal cord injury.FundingSRH Holding, Swiss National Science Foundation, Clinical Research Priority Program “NeuroRehab” University of Zurich, Wellcome Trust.
Highlights
Acute trauma to the spinal cord leads to different degrees of sensorimotor and autonomic nerve damage, for which an effective treatment is awaited
In the 12 months from baseline, patients recovered by a mean of 5·27 points per log month on the international standards for the neurological classification of spinal cord injury (ISNCSCI) motor score (p=0·002) and by 10·93 points per log month (6·20–15·66) on the spinal cord independence measure (SCIM) score (p
With the advent of clinical trials in this setting,[4,5] a pressing need exists for in-vivo neuroimaging biomarkers that can reliably assess the extent of neural damage, elucidate the mechanisms of neural repair, and predict clinical outcome.[6]
Summary
Acute trauma to the spinal cord leads to different degrees of sensorimotor and autonomic nerve damage, for which an effective treatment is awaited. Patients with a spinal cord injury generally show little clinical recovery within the first year after injury[1] and most are permanently disabled. Clinical recovery requires a degree of preservation of axonal tracts and sufficient myelination of fast conducting fibres.[2] Understanding the sequence of structural and functional changes at the spinal and brain level—and defining their effects on clinical outcome—is key to development of evidencebased rehabilitation therapy.[3] with the advent of clinical trials in this setting,[4,5] a pressing need exists for in-vivo neuroimaging biomarkers that can reliably assess the extent of neural damage, elucidate the mechanisms of neural repair, and predict clinical outcome.[6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.