Abstract

We propose a novel fully automated method for retrospective correction of intensity inhomogeneity, which is an undesired phenomenon in many automatic image analysis tasks, especially if quantitative analysis is the final goal. Besides most commonly used intensity features, additional spatial image features are incorporated to improve inhomogeneity correction and to make it more dynamic, so that local intensity variations can be corrected more efficiently. The proposed method is a four-step iterative procedure in which a non-parametric inhomogeneity correction is conducted. First, the probability distribution of image intensities and corresponding second derivatives is obtained. Second, intensity correction forces, condensing the probability distribution along the intensity feature, are computed for each voxel. Third, the inhomogeneity correction field is estimated by regularization of all voxel forces, and fourth, the corresponding partial inhomogeneity correction is performed. The degree of inhomogeneity correction dynamics is determined by the size of regularization kernel. The method was qualitatively and quantitatively evaluated on simulated and real MR brain images. The obtained results show that the proposed method does not corrupt inhomogeneity-free images and successfully corrects intensity inhomogeneity artefacts even if these are more dynamic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.