Abstract
This study aimed to evaluate the efficiency of imaging features and texture analysis (TA) based on baseline rectal MRI for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy (nCRT) and tumor recurrence in patients with locally advanced rectal cancer (LARC). Consecutive patients with LARC who underwent rectal MRI between January 2014 and December 2015 and surgical resection after completing nCRT were retrospectively enrolled. Imaging features were analyzed, and TA parameters were extracted from the tumor volume of interest (VOI) from baseline rectal MRI. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the optimal TA parameter cutoff values to stratify the patients. Logistic and Cox regression analyses were performed to assess the efficacy of each imaging feature and texture parameter in predicting tumor response and disease-free survival. In total, 78 consecutive patients were enrolled. In the logistic regression, good treatment response was associated with lower tumor location (OR = 13.284, p = 0.012), low Conv_Min (OR = 0.300, p = 0.013) and high Conv_Std (OR = 3.174, p = 0.016), Shape_Sphericity (OR = 3.170, p = 0.015), and Shape_Compacity (OR = 2.779, p = 0.032). In the Cox regression, a greater risk of tumor recurrence was related to higher cT stage (HR = 5.374, p = 0.044), pelvic side wall lymph node positivity (HR = 2.721, p = 0.013), and gray-level run length matrix_long-run low gray-level emphasis (HR = 2.268, p = 0.046). Imaging features and TA based on baseline rectal MRI could be valuable for predicting the treatment response to nCRT for rectal cancer and tumor recurrence. • Imaging features and texture parameters of T2-weighted MR images of rectal cancer can help to predict treatment response and the risk for tumor recurrence. • Tumor location as well as conventional and shape indices of texture features can help to predict treatment response for rectal cancer. • Clinical T stage, positive pelvic side wall lymph nodes, and the high-order texture parameter, GLRLM_LRLGE, can help to predict tumor recurrence for rectal cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.