Abstract

Frequency-modulated (FM) pulses can provide several advantages over conventional amplitude-modulated pulses in the field of MRI; however, the manner in which spins are manipulated imprints a quadratic phase on the resulting magnetization. Historically this was considered a hindrance and slowed the widespread adoption of FM pulses. This article seeks to provide a historical perspective of the different techniques that researchers have used to exploit the benefits of FM pulses and to compensate for the nonlinear phase created by this class of pulses in MRI. Expanding on existing techniques, a new method of phase compensation is presented that utilizes nonlinear gradients to mitigate the undesirable phase imparted by this class of pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.