Abstract

A framework to simulate the flow in the stomach using subject-specific motility patterns and geometries was developed. Dynamic 2D magnetic resonance images (MRIs) were obtained. Motility parameters such as contraction speed and occlusion were quantified, and 3D stomach geometries were reconstructed using a semi-automated approach. Computational fluid dynamics (CFD) simulations were performed, and flow patterns were investigated. The stomach of both subjects had distinct anatomical features with computed volumes of 789 mL and 619 mL. For the one subject, the occlusion (i.e., normalized contraction size) was 12% while it was around 25% for the other subject. Contraction speeds were also different (1.9-2.8 mm/s vs 3.0-5.1 mm/s) for each subject. CFD simulations resulted in unsteady laminar flow for both subjects with average velocities of 2.1 and 3.2 mm/s. While antegrade flow was mainly observed in the simulations, a retropulsive jet was also present in both stomachs. The versatile framework developed within this study would allow the generation of CFD models of gastric motility from dynamic MRIs.Clinical Relevance- Subject-specific models of flow patterns informed by gastric motility features can elucidate the impact of contractions and anatomical variations on digestion. Such models can inform therapies to treat gastric dysfunctions and improve their efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call