Abstract

The T2* value of interventricular septum is routinely reported for grading myocardial iron load in thalassemia major, and automatic segmentation of septum could shorten analysis time and reduce interobserver variability. To develop a deep learning-based method for automatic septum segmentation from black-blood MR images for the myocardial T2* measurement of thalassemia patients. Retrospective. One hundred forty-six transfusion-dependent thalassemia patients with cardiac MR examinations from two centers. Data from Center 1 (1.5 T) were assigned to the training (100 examinations) and internal testing (20 examinations) sets; data from Center 2 were assigned to the external testing set (26 examinations; 10 at 1.5 T and 16 at 3.0 T). 1.5 T and 3.0 T, multiecho gradient-echo sequence. A modified attention U-Net for septum segmentation was constructed and trained, and its performance evaluated on unseen internal and external datasets. T2* was measured by fitting the average septum signal, separately segmented by automatic and manual methods. Agreement between manual and automatic septum segmentations was assessed with the Dice coefficient, and T2* agreement was assessed using the Bland-Altman plot and the coefficient of variation (CoV). The median Dice coefficient of deep network-based septum segmentation was 0.90 [0.05] on the internal dataset, 0.82 [0.10] on the external 1.5 T dataset, and 0.86 [0.14] on the external 3.0 T dataset. T2* measurements using automatic segmentation corresponded with those from manual segmentation, with a mean difference of 0.02 (95% LoA: -0.74 to 0.79) msec, 0.43 (95% LoA: -2.1 to 3.0) msec, and 0.36 (95% LoA: -0.72 to 1.4) msec on the three datasets. The CoVs between the two methods were 3.1%, 7.0%, and 6.1% on the internal and two external datasets, respectively. The proposed septum segmentation yielded myocardial T2* measurements which were highly consistent with those obtained by manual segmentation. This automatic approach may facilitate data processing and avoid operator-dependent variability in practice. 4 TECHNICAL EFFICACY: Stage 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call