Abstract

ObjectiveThe goal of the proposed study was the development of a magnetic resonance imaging (MRI) compatible bone phantom suitable for evaluating focused ultrasound protocols. Materials and methodsHigh resolution CT images were used to segment femur bone. The segmented model was manufactured with (Acrylonitrile Butadiene Styrene) ABS plastic using a 3-D printer. The surrounding skeletal muscle tissue was mimicked using an agar–silica–evaporated milk gel (2% w/v–2% w/v–40% v/v). MR thermometry was used to evaluate the exposures of the bone phantom to focused ultrasound. ResultsThe estimated agar–silica–evaporated milk gel’s T1 and T2 relaxation times in a 1.5T magnetic field were 776ms and 66ms respectively. MR thermometry maps indicated increased temperature adjacent to the bone, which was also shown in situations of real bone/tissue interfaces. ConclusionDue to growing interest of using MRI guided Focused Ultrasound Surgery (MRgFUS) in palliating bone cancer patients at terminal stages of the disease, the proposed bone phantom can be utilized as a very useful tool for evaluating ultrasonic protocols, thus minimizing the need for animal models. The estimated temperature measured and its distribution near the bone phantom/agar interface which was similar to temperatures recorded in real bone ablation with FUS, confirmed the phantom’s functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.