Abstract
Abstract An automatic brain tumor segmentation method based on texture feature and kernel sparse coding from FLAIR (fluid attenuated inversion recovery) contrast-enhanced MRIs (magnetic resonance imaging) is presented in this paper. First, the MRIs are pre-processed to reduce noise, enhance contrast and correct the intensity non-uniformity. Then sparse coding is performed on the first order and second order statistical eigenvector extracted from original MRIs which is a patch of 3 × 3 around the voxel. The kernel dictionary learning is used to extract the non-linear features to construct two adaptive dictionaries for healthy and pathologically tissues respectively. A kernel-clustering algorithm based on dictionary learning is developed to code the voxels, then the linear discrimination method is used to classify the target pixels. In the end, the flood-fill operation is used to improve the segmentation quality. The results demonstrate that the method based on kernel sparse coding has better capacity and higher segmentation accuracy with low computation cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.