Abstract

Brain tumor is a serious life-threatening disease which occurs due to peculiar growth of cells or tissues present in brain. In recent times it is becoming a considerable cause of death of many people. The seriousness of this tumor growing in brain is very huge when compared to all other varieties of cancers and tumors. Hence, to save the affected people detection of the tumor and proper treatment should be done instantaneously without any delay. In this new age of technology, Machine Learning (ML) and Deep Learning (DL) models can be utilized to identify the tumor at early stages more precisely so that proper medication can be given to the affected person which will help in curing them. This paper proposes two different machine learning models to identify the brain tumor by analysing the Magnetic Resonance Image (MRI) scans of the brain. Both unsupervised and supervised learning models were implemented to detect the tumors in brain. Fuzzy C means is used as a part of unsupervised learning model, it is a data clustering algorithm in which entire data set is grouped into predefined number of clusters with every data point belonging to every cluster to a specific degree of membership value. In this approach tumor region is treated as one cluster and healthy brain is another cluster. Moving forward, as a part of supervised learning, transfer learning approach is implemented for classifying whether the given input MRI scan consists of tumor or not. Visual Geometric Group (VGG-19) model was used which is a 19-layer deep pre-trained neural network architecture for better accuracy and results. All the models were developed using python in jupyter notebook.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.