Abstract

In this paper, an automatic segmentation technique of multispectral magnetic resonance image of the brain using a new fuzzy point symmetry based genetic clustering technique is proposed. The proposed real-coded variable string length genetic fuzzy clustering technique (fuzzy-VGAPS) is able to evolve the number of clusters present in the data set automatically. Here, assignment of points to different clusters are made based on the point symmetry based distance rather than the Euclidean distance. The cluster centers are encoded in the chromosomes, whose value may vary. A newly developed fuzzy point symmetry based cluster validity index, FSym-index, is used as a measure of 'goodness' of the corresponding partition. This validity index is able to correctly indicate presence of clusters of different sizes as long as they are internally symmetrical. A Kd-tree based data structure is used to reduce the complexity of computing the symmetry distance. The proposed method is applied on several simulated T1-weighted, T2-weighted and proton density normal and MS lesion magnetic resonance brain images. Superiority of the proposed method over fuzzy C-means, expectation maximization, fuzzy variable string length genetic algorithm (fuzzy-VGA) clustering algorithms are demonstrated quantitatively. The automatic segmentation obtained by fuzzy-VGAPS clustering technique is also compared with the available ground truth information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.