Abstract

Pelvic organ prolapse (POP) is a major women's health problem. Its diagnosis through magnetic resonance imaging (MRI) has become popular due to current inaccuracies of clinical examination. The diagnosis of POP on MRI consists of identifying reference points on pelvic bone structures for measurement and evaluation. However, it is currently performed manually, making it a time-consuming and subjective procedure. We present a new segmentation approach for automating pelvic bone point identification on MRI. It consists of a multistage mechanism based on texture-based block classification, leak detection, and prior shape information. Texture-based block classification and clustering analysis using K-means algorithm are integrated to generate the initial bone segmentation and to identify leak areas. Prior shape information is incorporated to obtain the final bone segmentation. Then, the reference points are identified using morphological skeleton operation. Results demonstrate that the proposed method achieves higher bone segmentation accuracy compared to other segmentation methods. The proposed method can also automatically identify reference points faster and with more consistency compared with the manually identified point process by experts. This research aims to enable faster and consistent pelvic measurements on MRI to facilitate and improve the diagnosis of female POP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.