Abstract
PurposeTo develop and validate a model based on MRI radiomics modals for predicting surgical high FIGO(IB3 and ≥ IIA2) and low FIGO(IB1, IB2, and IIA1) stages in patients with cervical carcinoma (CC). MethodsA total of 296 early-stage patients with CC (preoperative FIGO stages IB-IIA) confirmed by surgery and pathology were included in this retrospective study from two institutions For each patient,we extracted radiomics features from spectral attenuated inversion-recovery T2-weighted (SPAIR-T2W) and contrast-enhanced T1-weighted (CE-T1W) images.Manual segmentation was performed using the 3D Slicer software, while radiomics features were extracted, screened using the R software. A 2-stage feature extraction strategy involving univariate analysis and the Least Absolute Shrinkage Selection Operator technique was performed. A support vector machine-based model was eventually constructed. Predictive accuracy of the training and validation datasets was assessed in terms of area under the ROC curve (AUC). ResultsA total of 1130 features were extracted from SPAIR-T2WI and CET1WI images respectively, in which 8 and 7 features significantly were associated with FIGO staging. AUCs of the SPAIR-T2W and CE-T1W models were were 0.803 and 0.790, respectively, in the internal validation group. In the external validation group, the AUCs were 0.767 and 0.749, respectively, which increased to 0.771 in the combined model. ConclusionOur study demonstrated the feasibility of radiomics features from SPAIR-T2W and CE-T1W images for the prediction of surgical FIGO stage in CC. Our proposed model thereby carries the potential as a non-invasive tool for the staging and treatment planning of this disease. Advances in knowledgeA radiomics model provide a non-invasive and objective method for the detection of FIGO staging in patients with cervical cancer before surgery, thus providing a reference for the selection of treatment options for patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.