Abstract
This article aims to build deep learning-based radiomic methods in differentiating vessel invasion from non-vessel invasion in cervical cancer with multi-parametric MRI data. A set of 1,070 dynamic T1 contrast-enhanced (DCE-T1) and 986 T2 weighted imaging (T2WI) MRI images from 167 early-stage cervical cancer patients (January 2014 - August 2018) were used to train and validate deep learning models. Predictive performances were evaluated using receiver operating characteristic (ROC) curve and confusion matrix analysis, with the DCE-T1 showing more discriminative results than T2WI MRI. By adopting an attention ensemble learning strategy that integrates both MRI sequences, the highest average area was obtained under the ROC curve (AUC) of 0.911 (Sensitivity = 0.881 and Specificity = 0.752). The superior performances in this article, when compared to existing radiomic methods, indicate that a wealth of deep learning-based radiomics could be developed to aid radiologists in preoperatively predicting vessel invasion in cervical cancer patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.