Abstract

The role of hepatic iron overload (HIO) in nonalcoholic fatty liver disease (NAFLD) pathogenesis has not been fully elucidated. This study aimed to investigate the effect of HIO and examine the diagnostic usefulness of magnetic resonance imaging (MRI)-based R2* quantification in evaluating hepatic iron content (HIC) and pathological findings in NAFLD. Prospective and retrospective. A prospective study of 168 patients (age, 57.2 ± 15.0; male/female, 80/88) and a retrospective validation study of 202 patients (age, 57.0 ± 14.4; male/female, 113/89) with liver-biopsy-confirmed NAFLD were performed. 3 T; chemical-shift encoded multi-echo gradient echo. Using liver tissues obtained by liver biopsy, HIC was prospectively evaluated in 168 patients by atomic absorption spectrometry. Diagnostic accuracies of HIC and R2* for grading hepatic inflammation plus ballooning (HIB) as an indicator of NAFLD activity were assessed. Student's t-test and analysis of variance (ANOVA) with Scheffe's multiple testing correction for univariate comparisons; multivariate logistic analysis. P-value less than 0.05 is statistically significant. HIC was significantly correlated with HIB grades (r = 0.407). R2* was significantly correlated with HIC (r = 0.557) and HIB grades (r = 0.569). R2* mapped an area under the receiver operating characteristic (AUROC; 0.774) for HIC ≥808 ng/mL (median value) with cutoff value of 62.5 s-1 . In addition, R2* mapped AUROC of HIB for grades ≥3 was 0.799 with cutoff value of 58.5 s-1 . When R2* was <62.5 s-1 , R2* correlated weakly with HIC (r = 0.372) as it was affected by fat deposition and did not correlate with HIB grades (P = 0.052). Conversely, when R2* was ≥62.5 s-1 , a significant correlation of R2* with HIC (r = 0.556) and with HIB grades was observed (P < 0.0001) with being less affected by fat deposition. R2* ≥ 62.5 s-1 is a promising modality for non-invasive diagnosis of clinically important high grades (≥3) of HIB associated with increased HIC. 1 TECHNICAL EFFICACY STAGE: 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call