Abstract

Glucose sensors for NMR relaxometry and magnetic resonance imaging (MRI) can be used for the direct measurement of glucose in turbid biological specimens. Here, we proposed a magnetic glucose sensor based on superparamagnetic iron oxide (SPIO) nanoparticles conjugated to a mannopyranoside derivative and concanavalin A (ConA). The binding of mannopyranoside groups to ConA produced a nanoparticle cluster that was dissociated by competitive binding of glucose to ConA, resulting in changes in the transverse relaxation time (T2) in a glucose-dependent manner. The sensor gave rise to significant T2 changes in physiological glucose levels of 3 - 8 mM at a nanoparticle concentration of 0.5 nM. Significant T2 responses were observed within 6 min of 5 mM glucose detection. Sensor-based MRI by a benchtop 1 tesla scanner permitted a measurement of multiple samples within 8 min. These results demonstrate that the relaxometric glucose sensor could lead to high throughput direct assay of blood samples by using a compact MRI scanner for point-of-care testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.