Abstract

Despite the fact that most vascular surgeons in Russia rarely use magnetic resonance imaging (MRI) in their daily practice, today interest in this method of imaging among specialists in the world is steadily increasing. This is due to the desire of clinicians to have another non – invasive method for diagnosing hemodynamic disorders of both the arterial (Magnetic Resonance Angiography – MRA) and venous vascular bed (Magnetic Resonance Venography – VRA). The development of these methods today is associated with the solution of many technical problems, the development of special pulse sequences and post-processing methods for the resulting image. This literature review analyzes published scientific data on the methodology of MRI in relation to the vascular system and the choice of optimal scanning modes. Taking into consideration the fact that this material is intended primarily for vascular surgeons and phlebologists, and not radiologists, the first part summarizes the basic understanding of the physical phenomena underlying the MRI image, without which a thoughtful analysis of the advantages and disadvantages of MR-Angiography and the search for the most optimal scanning mode for MR-Venography is not possible. Based on the constant desire of clinicians to be self-educated, it seems that this part of the presented material will not be difficult to understand. When describing the developed contrast-free and contrast-free MRA methods, attention is paid to the traditional methods of image processing in 2D mode (TOF, PC) using pulse sequences: spin echo (SE), multi-echo (SE T2), turbo spin echo (TSE), fast Advanced Spin Echo (fast Advanced Spin Echo-FASE), gradient echo (Gradient Echo-GE, GRE) and inversion recovery (Inversion Recovery-IR). In addition, the focus is on the most modern solu tions, including: multiplantar reformatting (MPR), maximum intensity projection (MIP), subvolume maximum intensity, surface rendering (SR), volume rendering (VR) and virtual intraluminal endoscopy (VIE). For all the methods used today, MR-Angiography is shown to be specific and informative, with a detailed analysis of the advantages and disadvantages. The nuances of understanding the resulting angiographic image in T1 and T2-weighted images and the phenomena of “bright blood” and “black blood” are shown. Since the absence of information or a brief mention only about the possibilities of using MRI in the diagnosis of hemodynamic disorders in patients with vascular pathology in Russian scientific literature it seems that this material is relevant and will arouse some interest from various specialists. Of particular interest is the potential use of contrast-free and contrast – free MR Angiography in the study of venous pathology of the lower extremities and pelvis, especially with regard to timely and accurate diagnosis of deep venous thrombosis (deep Vein Thrombosis-DVT) and venous thromboembolism (Venous Thrombosis – Embolism – VTE), which occupy a special position in the structure of patients with chronic venous Disorders of the lower extremities (Chronic Venous Disorders-CVD).

Highlights

  • Физические основы магнитнорезонансной томографииС целью даже самого поверхностного понимания сути явлений, происходящих в тканях живого организма при MRI необходимо совершить краткий экскурс в основы квантовой физики или иначе физики элементарных частиц, как бы это страшно и безнадежно ни звучало [12].

  • Т1- и Т2-взвешенные изображения являются прежде всего изображениями, выведенными на экран, однако, прежде чем их собрать, необходимо при сканировании применить определенные последовательности РЧ-импульсов, основные из которых имеют следующие названия [12, 17, 18]: Последовательность спин-эхо (SE) В основе данной последовательности лежит повторное применение 180° РЧ-импульса через короткий промежуток времени после первого 90° РЧ-импульса, что позволяет добиться сохранения движения спинов по фазе и как следствие получения высокого сигнала, что и влияет в итоге на качество изображения.

  • Последовательность быстрого улучшения спин-эхо (Fast Advanced Spin Echo – FASE) Как и в предыдущей последовательности, в данном случае используется большое количество следующих друг за другом 180° РЧ-импульсов (общее ETL равно 212), однако в дополнение к предыдущей последовательности формирование конечного изображения происходит половинным Фурье-преобразованием (Half-Fourier Imaging – HFI), что наряду с ускорением сканирования дает качественное улучшение полученного изображения [20].

Read more

Summary

Физические основы магнитнорезонансной томографии

С целью даже самого поверхностного понимания сути явлений, происходящих в тканях живого организма при MRI необходимо совершить краткий экскурс в основы квантовой физики или иначе физики элементарных частиц, как бы это страшно и безнадежно ни звучало [12]. Т1- и Т2-взвешенные изображения являются прежде всего изображениями, выведенными на экран, однако, прежде чем их собрать, необходимо при сканировании применить определенные последовательности РЧ-импульсов, основные из которых имеют следующие названия [12, 17, 18]: Последовательность спин-эхо (SE) В основе данной последовательности лежит повторное применение 180° РЧ-импульса через короткий промежуток времени после первого 90° РЧ-импульса, что позволяет добиться сохранения движения спинов по фазе и как следствие получения высокого сигнала, что и влияет в итоге на качество изображения. Последовательность быстрого улучшения спин-эхо (Fast Advanced Spin Echo – FASE) Как и в предыдущей последовательности, в данном случае используется большое количество следующих друг за другом 180° РЧ-импульсов (общее ETL равно 212), однако в дополнение к предыдущей последовательности формирование конечного изображения происходит половинным Фурье-преобразованием (Half-Fourier Imaging – HFI), что наряду с ускорением сканирования дает качественное улучшение полученного изображения [20]. В отношении использования различных импульсных последовательностей необходимо отметить, что их основными динамическими параметрами, от изменения которых зависит оптимальный сбор информации при любом MRI исследовании, являются [23]: TR (Repetition Time) – время повторения ТЕ (Echo Time) – время эхо FA (Flip Angle) – угол переворота TI (Inversion Time) – время инверсии NA (Number of Acquisitions) – число сбора данных MX (Matrix) – матрица FOV (Field Of View) – поле наблюдения ST (Slice Thickness) – толщина среза SG (Slice Gap) – зазор между срезами PE (Phase Encoding) – кодирование фазы BW (Bandwidth) – полоса пропускания

Бесконтрастные методы выполнения MRA
Контрастные методы выполения MRA
Участие авторов
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call