Abstract
The objectives of this study were to analyze simultaneously meniscal and tibiofemoral kinematics in healthy volunteers and anterior cruciate ligament (ACL)-deficient patients under axial load-bearing conditions using magnetic resonance imaging (MRI). Ten healthy volunteers and eight ACL-deficient patients were examined with a high-field, closed MRI system. For each group, both knees were imaged at full extension and partial flexion ( approximately 45 degrees ) with a 125N compressive load applied to the foot. Anteroposterior and medial/lateral femoral and meniscal translations were analyzed following three-dimensional, landmark-matching registration. Interobserver and intraobserver reproducibilities were less than 0.8 mm for femoral translation for image processing and data analysis. The position of the femur relative to the tibia in the ACL-deficient knee was 2.6 mm posterior to that of the contralateral, normal knee at extension. During flexion from 0 degrees to 45 degrees , the femur in ACL-deficient knees translated 4.3 mm anteriorly, whereas no significant translation occurred in uninjured knees. The contact area centroid on the tibia in ACL-deficient knees at extension was posterior to that of uninjured knees. Consequently, significantly less posterior translation of the contact centroid occurred in the medial tibial condyle in ACL-deficient knees during flexion. Meniscal translation, however, was nearly the same in both groups. Axial load-bearing MRI is a noninvasive and reproducible method for evaluating tibiofemoral and meniscal kinematics. The results demonstrated that ACL deficiency led to significant changes in bone kinematics, but negligible changes in the movement of the menisci. These results help explain the increased risk of meniscal tears and osteoarthritis in chronic ACL deficient knees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.