Abstract

A near-infrared (NIR) tomography system with spectrally-encoded sources in two wavelength bands was built to quantify the temporal oxyhemoglobin and deoxyhemoglobin contrast in breast tissue at a 20 Hz bandwidth. The system was integrated into a 3 T magnetic resonance (MR) imaging system through a customized breast coil interface for simultaneous optical and MRI acquisition. In this configuration, the MR images provide breast tissue structural information for NIR spectroscopy of adipose and fibro-glandular tissue in breast. Spectral characterization performance of the NIR system was verified through dynamic phantom experiments. Normal human subjects were imaged with finger pulse oximeter (PO) plethysmogram synchronized to the NIR system to provide a frequency-locked reference. Both the raw data from the NIR system and the recovered absorption coefficients of the breast at two wavelengths showed the same frequency of about 1.3 Hz as the PO output. The frequency lock-in approach provided a practical platform for MR-localized recovery of small pulsatile variations of oxyhemoglobin and deoxyhemoglobin in the breast, which are related to the heartbeat and vascular resistance of the tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.