Abstract
The effects of dependencies (such as association) in the arrival process to a single server queue on mean queue lengths and mean waiting times are studied. Markov renewal arrival processes with a particular transition matrix for the underlying Markov chain are used which allow us to change dependency properties without at the same time changing distributional conditions. It turns out that correlations do not seem to be pure effects, and three main factors are studied: (a) differences in the mean interarrival times in the underlying Markov renewal process, (b) intensity in the Markov renewal jump process, (c) variability in the point processes underlying the Markov renewal process. It is shown that the mean queue length can be made arbitrarily large in the class of queues with the same interarrival distributions and the same service time distributions (with fixed smaller than one traffic intensity), by making (a) large enough and (b) small enough. The existence of the moments of interest is confirmed and some stochastic comparison results for actual waiting times are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.