Abstract

Left and right idealizers are important invariants of linear rank-distance codes. In the case of maximum rank-distance (MRD for short) codes in Fqn×n the idealizers have been proved to be isomorphic to finite fields of size at most qn. Up to now, the only known MRD codes with maximum left and right idealizers are generalized Gabidulin codes, which were first constructed in 1978 by Delsarte and later generalized by Kshevetskiy and Gabidulin in 2005. In this paper we classify MRD codes in Fqn×n for n≤9 with maximum left and right idealizers and connect them to Moore-type matrices. Apart from generalized Gabidulin codes, it turns out that there is a further family of rank-distance codes providing MRD ones with maximum idealizers for n=7, q odd and for n=8, q≡1(mod3). These codes are not equivalent to any previously known MRD code. Moreover, we show that this family of rank-distance codes does not provide any further examples for n≥9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call