Abstract
Over the last decade, the development of effective treatment approaches for multiple myeloma (MM) has been associated with higher response rates and longer survival. In patients who achieve complete response, several high sensitivity techniques have been studied to assess minimal residual disease (MRD) and detect residual neoplastic cells within the bone marrow (by flow cytometry or molecular biology techniques) or outside the bone marrow (by imaging or circulating disease markers in the peripheral blood). This is of utmost importance, since residual disease can drive clinical relapse. This review focuses on the progress made in the assessment of MRD in MM. The achievement of MRD negativity after therapy is considered prognostically important for MM patients, and data from clinical trials and meta-analyses have confirmed that it is strongly associated with better survival. Along with well-known techniques, such as next-generation sequencing (NGS), next-generation flow (NGF), and positron emission tomography/computed tomography (PET/CT), other methods such as mass spectrometry (MS) and circulating tumor cells are under study. Intensive treatment regimens at diagnosis can lead up to 70% of MRD negativity in MM patients, although the current proportion of curable patients is still unknown. Today, clinicians who treat MM deal with MRD assessment in routine clinical practice. Its appropriate use in therapeutic decision making may be the most fascinating and challenging issue to be addressed over the next few years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.