Abstract

How early- and late-firing origins are selected on eukaryotic chromosomes is largely unknown. Here, we show that Mrc1, a conserved factor required for stabilization of stalled replication forks, selectively binds to the early-firing origins in a manner independent of Cdc45 and Hsk1 kinase in the fission yeast Schizosaccharomyces pombe. In mrc1Δ cells (and in swi1Δ cells to some extent), efficiency of firing is stimulated, and its timing is advanced selectively at those origins that are normally bound by Mrc1. In contrast, the late or inefficient origins which are not bound by Mrc1 are not activated in mrc1Δ cells. The enhanced firing and precocious Cdc45 loading at Mrc1-bound early-firing origins are not observed in a checkpoint mutant of mrc1, suggesting that non-checkpoint function is involved in maintaining the normal program of early-firing origins. We propose that prefiring binding of Mrc1 is an important marker of early-firing origins which are precociously activated by the absence of this protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.