Abstract

A study of the applicability of nonlinear finite element analysis (FEA) to predict soft tissue deformation was validated with phase contrast magnetic resonance velocity imaging. A phantom of varying stiffness was placed in a special purpose, computer controlled MR compatible compression apparatus which provided precise, time varying compression with surface deformations on the order of 11%. The resulting motion was measured with MR velocity images acquired throughout the cycle of compression. The phantom geometry was modeled with a finite element mesh and the mechanical properties of the phantom material were measured and incorporated in the FEA model. The motion as calculated by the FEA model was compared to the motion measured with MRI and the results were found to vary with the material's Poisson's ratio and the coefficient of friction. A minimum difference was reached when the Poisson's ratio and coefficient of friction were set to 0.485 and 0.3, respectively. Under these conditions, the root mean square difference was found to be 14.4%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call