Abstract

To evaluate magnetic resonance (MR) T1 mapping for quantifying brain manganese (Mn) deposition in type C hepatic encephalopathy (CHE) rats and to investigate the mechanism of magnesium sulfate (MgSO4) therapy. Thirty Sprague-Dawley rats were randomly assigned into normal control group (NC, n = 6) and CHE groups (n = 24). Thioacetamide (TAA) was used for modeling CHE rats. CHE groups were further divided into 4 subgroups: TAA group, MgSO4 low dose (Mg-L) group, MgSO4 high dose (Mg-H) group and deionized water (DW) group (n = 6 for each group). TAA, Mg-L, Mg-H and DW groups were received intraperitoneal injections of 250mg TAA/kg, twice a week for 8weeks. Mg-L and Mg-H groups were orally received MgSO4 of 124 and 248mg/kg daily, respectively, for another 8weeks (without TAA). MR T1 mapping was performed in NC, TAA, Mg-L, Mg-H and DW groups at various time points. T1 value and Mn content in basal ganglia, hippocampus, cerebral cortex and cerebellum were evaluated. Morris water maze (MWM) and narrow beat test (NBT) were utilized to evaluate rats' learning, memory and motor ability. Contents of interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a) and calcium-binding adaptor 1 protein (Iba1) were evaluated. Reduced T1 values in basal ganglia, hippocampus and cerebral cortex (P < 0.01, P < 0.05 and P < 0.05, respectively); increased Mn content in basal ganglia, hippocampus and cerebral cortex (all P < 0.05); reduced times of head contacting with region of interest (ROI), reduced times of entrance into the target quadrant (both P < 0.05); increased NBT total time (P < 0.05); increased brain contents of IL-6 (P < 0.001), TNF-α (P < 0.01) and over-expression of Iba1 were found in TAA group compared to NC group. After treated by MgSO4, increased T1 value and reduced Mn content in basal ganglia, hippocampus and cerebral cortex (all P < 0.01); increased times of head contacting with ROI, increased times of entrance into the target quadrant (both P < 0.05); reduced NBT total time (P < 0.01); reduced brain content of IL-6, TNF-α (both P < 0.05) and reduced expression of Iba1 were found. T1 values were negatively correlated with Mn contents in basal ganglia (r = - 0.834, P < 0.01), hippocampus (r = - 0.739, P < 0.05), cortex (r = - 0.801, P < 0.05) and cerebellum (r = - 0.788, P < 0.05). T1 mapping could quantify brain Mn deposition in CHE rats. MgSO4 could improve cognition and motor ability of CHE rats by reducing brain Mn deposition, alleviating neurological inflammation and achieve the effective therapy for CHE. Mn may participate in the pathogenesis of CHE through neuroinflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.