Abstract

ObjectivesTo establish an MRI-based radiomics model for predicting the microvascular invasion (MVI) status of cHCC-CCA and to investigate biological processes underlying the radiomics model.MethodsThe study consisted of a retrospective dataset (82 in the training set, 36 in the validation set) and a prospective dataset (25 patients in the test set) from two hospitals. Based on the training set, logistic regression analyses were employed to develop the clinical-imaging model, while radiomic features were extracted to construct a radiomics model. The diagnosis performance was further validated in the validation and test sets. Prognostic aspects of the radiomics model were investigated using the Kaplan–Meier method and log-rank test. Differential gene expression analysis and gene ontology (GO) analysis were conducted to explore biological processes underlying the radiomics model based on RNA sequencing data.ResultsOne hundred forty-three patients (mean age, 56.4 ± 10.5; 114 men) were enrolled, in which 73 (51.0%) were confirmed as MVI-positive. The radiomics model exhibited good performance in predicting MVI status, with the area under the curve of 0.935, 0.873, and 0.779 in training, validation, and test sets, respectively. Overall survival (OS) was significantly different between the predicted MVI-negative and MVI-positive groups (median OS: 25 vs 18 months, p = 0.008). Radiogenomic analysis revealed associations between the radiomics model and biological processes involved in regulating the immune response.ConclusionA robust MRI-based radiomics model was established for predicting MVI status in cHCC-CCA, in which potential prognostic value and underlying biological processes that regulate immune response were demonstrated.Critical relevance statementMVI is a significant manifestation of tumor invasiveness, and the MR-based radiomics model established in our study will facilitate risk stratification. Furthermore, underlying biological processes demonstrated in the radiomics model will offer valuable insights for guiding immunotherapy strategies.Key PointsMVI is of prognostic significance in cHCC-CCA, but lacks reliable preoperative assessment.The MRI-based radiomics model predicts MVI status effectively in cHCC-CCA.The MRI-based radiomics model demonstrated prognostic value and underlying biological processes.The radiomics model could guide immunotherapy and risk stratification in cHCC-CCA.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.