Abstract

We introduce a coloring game on graphs, in which each vertex $v$ of a graph $G$ owns a stack of $\ell_v{-}1$ erasers. In each round of this game the first player Mr. Paint takes an unused color, and colors some of the uncolored vertices. He might color adjacent vertices with this color – something which is considered "incorrect". However, Mrs. Correct is positioned next to him, and corrects his incorrect coloring, i.e., she uses up some of the erasers – while stocks (stacks) last – to partially undo his assignment of the new color. If she has a winning strategy, i.e., she is able to enforce a correct and complete final graph coloring, then we say that $G$ is $\ell$-paintable. Our game provides an adequate game-theoretic approach to list coloring problems. The new concept is actually more general than the common setting with lists of available colors. It could have applications in time scheduling, when the available time slots are not known in advance. We give an example that shows that the two notions are not equivalent; $\ell$-paintability is stronger than $\ell$-list colorability. Nevertheless, many deep theorems about list colorability remain true in the context of paintability. We demonstrate this fact by proving strengthened versions of classical list coloring theorems. Among the obtained extensions are paintability versions of Thomassen's, Galvin's and Shannon's Theorems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.