Abstract
Purpose To develop and evaluate magnetic resonance (MR) neurography of the brachial plexus with robust fat and blood suppression for increased conspicuity of nerves at 3.0 T in clinically feasible acquisition times. Materials and Methods This prospective study was HIPAA compliant, with institutional review board approval and written informed consent. A low-refocusing-flip-angle three-dimensional (3D) turbo spin-echo (TSE) sequence was modified to acquire both in-phase and out-of-phase echoes, required for chemical shift (Dixon) reconstruction, in the same repetition by using partial echoes combined with modified homodyne reconstruction with phase preservation. This multiecho TSE modified Dixon (mDixon) sequence was optimized by using simulations and phantom studies and in three healthy volunteers. The sequence was tested in five healthy volunteers and was evaluated in 10 patients who had been referred for brachial plexopathy at 3.0 T. The images were evaluated against the current standard of care, images acquired with a 3D TSE short inversion time inversion recovery (STIR) sequence, qualitatively by using the Wilcoxon signed-rank test and quantitatively by using the Friedman two-way analysis of variance, with P < .05 considered to indicate a statistically significant difference. Results Multiecho TSE-mDixon involving partial-echo and homodyne reconstruction with phase preservation achieved uniform fat suppression in half the imaging time compared with multiacquisition TSE-mDixon. Compared with 3D TSE STIR, fat suppression, venous suppression, and nerve visualization were significantly improved (P < .05), while arterial suppression was better but not significantly so (P = .06), with increased apparent signal-to-noise ratio in the dorsal nerve root ganglion and C6 nerve (P < .001) with the multiecho TSE-mDixon sequence. Conclusion The multiecho 3D TSE-mDixon sequence provides robust fat and blood suppression, resulting in increased conspicuity of the nerves, in clinically feasible imaging times and can be used for MR neurography of the brachial plexus at 3.0 T. © RSNA, 2016 Online supplemental material is available for this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.