Abstract

The T2 of brain tissue is known to be field dependent, decreasing as B0 increases. Previous studies have attributed reduced T2 in the structures of the extrapyramidal motor system (EPMS) to high iron concentrations. The present study was designed to manipulate physiologic iron concentrations and study the effects on T2 and on the field dependence of T2 at 7.0 T in whole formalin-fixed brains. A rat model was devised in which iron concentrations in the structures of interest were altered by diet manipulation. Cerebral structures with different iron content were imaged and T2 measured with MR microscopy at both 2.0 and 7.0 T. T2 of all tissues was shorter by 40%-60% at 7.0 T. Although some dependence of T2 on iron concentration was evident, it was less than expected. The strongest correlation was in the substantia nigra. The highest-resolution studies, at 30 x 30 x 50 microns, show the myelin bundles in many of the EPMS structures but not in the substantia nigra. From these data, it appears that T2 at greater field strengths depends more on susceptibility-induced spin dephasing imposed by diffusion through the tissue microstructure than on the presence of iron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.