Abstract

Aortic coarctation accounts for 5%-10% of all congenital heart diseases and represents 7% of critically ill infants with heart disease. Magnetic resonance (MR) imaging allows the study of this disease with several advantages in comparison with conventional angiography, transesophageal echocardiography, and computed tomography. The MR protocol applied at our institution for both diagnosis and follow-up after surgical or endovascular treatment consists of four steps: morphologic study, cine MR study, flow analysis, and MR angiography (MRA). The first three sequences are acquired during breath-hold and with electrocardiographic gating. Anatomy is well depicted with dark-blood half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences. Cine true-fast imaging with steady-state precession (true-FISP) sequences show not only morphologic features but also blood-flow changes inside the aorta. Gradient-echo sequences for phase-velocity mapping allow flow analysis. Application of Bernoulli's equation--here briefly presented and discussed--allows for calculation of the pressure gradient caused by the coarctation. MRA, acquired with a breath-hold three-dimensional T1-weighted gradient-echo sequence and intravenous administration of paramagnetic contrast material, allows for optimal depiction of the aortic lumen, with a panoramic view of the whole aorta, its main branches and possible collateral circulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.