Abstract

To define thresholds for detecting significant change in liver viscoelasticity with magnetic resonance (MR) elastography, both for whole-liver measurements and for voxel-wise measurements in relation to spatial resolution. This prospective study was approved by the institutional review board, and all participants provided written informed consent. Thirty participants (16 volunteers and 14 patients with hepatitis B or C; 18 men; median age, 30.4 years; age range, 18.9-58.6 years) underwent imaging twice while in the same position (intraimage reproducibility), after repositioning (within-day reproducibility), and 1-4 weeks later (between-weeks reproducibility). MR elastography parameters comprised elasticity, viscosity, attenuation parameter α, and propagation parameter β. Bland-Altman analysis was used to calculate repeatability indexes for each parameter. Analyses were performed in a region-of-interest and a voxel-by-voxel level. Voxel-wise results were calculated in relation to spatial resolution by applying Gaussian filtering to establish the optimal trade-off point between resolution and reproducibility. For elasticity, α, and β, within-day and between-weeks results were significantly lower than intraimage results (P ≤ .018 for all). Within-day and between-weeks results did not differ significantly. Over-time changes of more than 22.2% for elasticity, 26.3% for viscosity, 26.8% for α, and 10.1% for β represented thresholds for significant change. The optimal trade-off between spatial resolution and reproducibility was found at a filter size of 8-mm full width at half maximum (FWHM) for elasticity and propagation parameter β and at 16-mm FWHM for viscosity and attenuation parameter α. Repositioning causes a significant decrease in the reproducibility of MR elastography. The propagation parameter β is the most reliable parameter, with an over-time threshold for significant change of 10.1% and the ability to reproduce viscoelasticity up to a resolution of 8-mm FWHM. Online supplemental material is available for this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.