Abstract
Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are widely used to investigate central nervous system (CNS) white matter structure and pathology. Changes in principal diffusivities parallel and perpendicular to nerve fibers or axonal tracts have been associated with axonal pathology and de/dysmyelination respectively. However, the ultra-structural properties and the pathological alterations of white matter responsible for diffusivity changes have not been fully elucidated. We examined the relationship between the directional diffusivities and ultra-structural properties in mouse optic nerve using healthy animals, and mice with optic neuritis (ON) that exhibited marked inflammatory changes and moderately severe axonal pathology. Progressive axonal degeneration in ON resulted in a 23% reduction of parallel diffusivity as detected by diffusion MRI (P<10(-5)), but no change in perpendicular diffusivity. Parallel diffusion changes were highly correlated with the total axolemmal cross-sectional area in the pre-chiasmal portion of the optic nerve (r=0.86, P<0.001). This study provides quantitative evidence that reduced parallel diffusivity in the optic nerve correlates significantly with axolemmal cross-sectional area reductions. MRI-based assessment of axonal degeneration in murine ON is feasible and potentially useful for monitoring of neuro-protective therapies in preclinical trials in animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.