Abstract

PurposeFunctional MRI (fMRI) is a well-established method used to investigate localised brain activation by virtue of the blood oxygen level dependent (BOLD) effect. It often relies on visual presentations using beam projectors, liquid crystal display (LCD) screens, and goggle systems. In this study, we designed an MR compatible, low-cost display unit based on organic light-emitting diodes (OLED) and demonstrated its performance.MethodsA 3.8” dual OLED module and an MIPI-to-HDMI converter board were used. The OLED module was enclosed using a shielded box to prevent noise emission from the display module and the potentially destructive absorption of high power RF from the MRI transmit pulses. The front of the OLED module was covered by a conductive, transparent mesh. Power was supplied from a non-magnetic battery. The shielding of the display was evaluated by directly measuring the electromagnetic emission with the aid of a pickup loop and a low noise amplifier, as well as by examining the signal-to-noise ratio (SNR) of phantom MRI data. The visual angle of the display was calculated and compared to standard solutions. As a proof of concept of the OLED display for fMRI, a healthy volunteer was presented with a visual block paradigm.ResultsThe OLED unit was successfully installed inside a 3 T MRI scanner bore. Operation of the OLED unit did not degrade the SNR of the phantom images. The fMRI data suggest that visual stimulation can be effectively delivered to subjects with the proposed OLED unit without any significant interference between the MRI acquisitions and the display module itself.DiscussionWe have constructed and evaluated the MR compatible, dual OLED display for fMRI studies. The proposed OLED display provides the benefits of high resolution, wide visual angle, and high contrast video images during fMRI exams.

Highlights

  • Functional magnetic resonance imaging has been widely used in brain activation studies

  • The shielding of the display was evaluated by directly measuring the electromagnetic emission with the aid of a pickup loop and a low noise amplifier, as well as by examining the signal-to-noise ratio (SNR) of phantom MRI data

  • The organic light-emitting diodes (OLED) unit was successfully installed inside a 3 T MRI scanner bore

Read more

Summary

Methods

A 3.8” dual OLED module and an MIPI-to-HDMI converter board were used. The OLED module was enclosed using a shielded box to prevent noise emission from the display module and the potentially destructive absorption of high power RF from the MRI transmit pulses. The front of the OLED module was covered by a conductive, transparent mesh. Power was supplied from a non-magnetic battery. The shielding of the display was evaluated by directly measuring the electromagnetic emission with the aid of a pickup loop and a low noise amplifier, as well as by examining the signal-to-noise ratio (SNR) of phantom MRI data. The visual angle of the display was calculated and compared to standard solutions. As a proof of concept of the OLED display for fMRI, a healthy volunteer was presented with a visual block paradigm

Results
Introduction
General description of the OLED display system
MR compatibility issues due to magnetic components
RF interference and noise issue
Noise measurement of the OLED and analysis
Display properties
Visual angle of the display
System connection and setup in MRI system
MR based validation
12. Trusted Reviews ’OLED vs LED LCD
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call