Abstract

The chemical exchange (CE) process has been exploited as a novel and powerful contrast mechanism for MRI, which is primarily performed in the form of chemical exchange saturation transfer (CEST) imaging. A spin-lock (SL) technique can also be used for CE studies, although traditionally performed and interpreted quite differently from CEST. Chemical exchange imaging with spin-lock technique (CESL), theoretically based on the Bloch–McConnell equations common to CEST, has the potential to be used as an alternative to CEST and to better characterize CE processes from slow and intermediate to fast proton exchange rates through the tuning of spin-lock pulse parameters. In this study, the Z-spectrum and asymmetric magnetization transfer ratio (MTRasym) obtained by CESL are theoretically analyzed and numerically simulated using a general two-pool R1ρ relaxation model beyond the fast-exchange limit. The influences of spin-lock parameters, static magnetic field strength B0 and physiological properties on the Z-spectrum and MTRasym are quantitatively revealed. Optimization of spin-lock frequency and spin-lock duration for the maximum CESL contrast enhancement is also investigated. Numerical simulation results in this study are compatible with the findings in the existing literature on CE imaging studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.