Abstract

Liver fibrosis is characterized by the excessive accumulation of extracellular matrix proteins. Electrical conductivity imaging at low frequency can provide novel contrast because the contrast mechanisms originate from the changes in the concentration and mobility of ions in the extracellular space. To evaluate the feasibility of an MR-based electrical conductivity imaging that can detect the changes in a tissue condition associated with the progression of liver fibrosis. Prospective phantom and animal study. Fibrosis was induced by weekly intraperitoneal injection of dimethylnitrosamine (DMN) in 45 male Sprague-Dawley rats. 3T MRI with a multispin-echo pulse sequence. The percentage change of conductivity (Δσ, %) in the same region-of-interest (ROI) was calculated from the DMN-treated rats based on the values of the normal control rats. The percentage change was also calculated between the ROIs in each DMN-treated group. One-way analysis of variance (ANOVA) and a two-sample t-test were performed. Liver tissues in normal control rats showed a uniform conductivity distribution of 56.6 ± 4.4 (mS/m). In rats more than 5 weeks after induction, the fibrous region showed an increased conductivity of ≥12% compared to that of the corresponding normal control rats. From regional comparisons in the same liver, the fibrous region showed an increased conductivity of ≥11% compared to the opposite, less induced region of rats more than 5 weeks after induction. Liver samples from the fibrous region represent tissue damages such as diffuse centrilobular congestion with marked dilatation of central veins from the histological findings. Immunohistochemistry revealed significant levels of attenuated fibrosis and increased inflammatory response. The increased conductivity in the fibrous region is related to the changes of the extracellular space. The correlation between the collagen deposition and conductivity changes is essential for future clinical studies. Level of Evidence 2 Technical Efficacy Stage 2 J. MAGN. RESON. IMAGING 2021;53:554-563.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call