Abstract

MGMT expression is a critical determinant for therapeutic resistance to DNA alkylating agents. We previously demonstrated that MGMT expression is post-transcriptionally regulated by miR-181d and other miRNAs. Here, we performed a genome-wide screen to identify MGMT regulating miRNAs. Candidate miRNAs were further tested for inverse correlation with MGMT expression in clinical specimens. We identified 15 candidate miRNAs. Comparison of these candidates to those predicted computational algorithms, including DIANA micro, Targetscan, miRanda, and microcosm showed poor agreement (3-22%), suggesting the need for empiric validation of in silico predictions. Transfection of miR-603, the top scoring candidate, suppressed MGMT mRNA/protein expression in vitro and in vivo; this effect was reversed by transfection with antimiR-603. miR-603 affinity-precipitated with MGMT mRNA and suppressed luciferase activity in an MGMT-3'UTR-luciferase assay, suggesting direct interaction between miR-603 and MGMT 3'UTR. miR-603 transfection enhanced the temozolomide (TMZ) sensitivity of MGMT-expressing glioblastoma cell lines. Importantly, miR-603 mediated MGMT suppression and TMZ resistance were reversed by expression of an MGMT cDNA. miR-603 cooperates with miR-181d to bind to the 3'UTR of MGMT to suppress MGMT expression. In a collection of 74 clinical glioblastoma specimens, both miR-603 and miR-181d levels inversely correlated with MGMT expression. However, a combined index of the two miRNAs better reflected MGMT expression than each individually. These results suggest that MGMT is co-regulated by independent miRNAs. Our results further suggest that these miRNA may regulate MGMT by direct binding of MGMT 3'UTR or through modulation of proteins that regulate MGMT stability/degradation. Characterization of these miRNAs should contribute toward strategies for enhancing the efficacy of DNA alkylating agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.