Abstract

This paper presents an electromagnetic design method for magneto-rheological (MR) valves. Since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high-level fluid power without any mechanical moving parts. In order to improve the performances of the MR valve, it is important that the magnetic field is effectively supplied to the MR fluid. For the purpose, the magnetic circuit composed with the yoke for forming magnetic flux path, the electromagnetic coil and the MR fluid should be well designed. In order to improve the static characteristic of the MR valve, the length of the magnetic flux path is decreased by removing the unnecessary bulk of the yoke. Also, in order to improve its dynamic and hysteretic characteristics, the magnetic reluctance of the magnetic circuit should be increased by minimizing the cross-sectional area of the yoke through which the magnetic flux passes. After two MR valves, one is a conventional type valve and the other is the proposed one, are designed and fabricated, their performances are evaluated experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.