Abstract
Ascochyta blight (AB) caused by the fungal pathogen Ascochyta rabiei is a serious foliar disease of chickpea (Cicer arietinum L.). Despite many genetic studies on chickpea-Ascochyta interaction, genome-wide scan of chickpea for the identification of AB-associated quantitative trait loci (QTLs) and their gene(s) has not been accomplished. To elucidate narrow QTLs for AB resistance, here, we report the use of multiple QTL-sequencing approach on 2 sets of extreme AB phenotype bulks derived from Cicer intraspecific and interspecific crosses. Two major QTLs, qABR4.1 and qABR4.2, and a minor QTL, qABR4.3, were identified on assembled chickpea pseudomolecule 4. We narrowed qABR4.1 to a "robust region" at 4.568-4.618Mb through mapping on a larger intraspecific cross-derived population and comparative analysis. Among 4 genes, the CaAHL18 gene showed higher expression under Ascochyta stress in AB resistant parent suggesting that it is the candidate gene under "robust qABR4.1." Dual-luciferase assay with CaAHL18 polymorphic cis-regulatory sequences showed that allelic variation is associated with higher expression. Thus, our findings on chickpea-Ascochyta interaction have narrowed down AB resistance associated QTLs on chickpea physical map. The narrowed QTLs and gene-associated markers will help in biotechnological and breeding programs for chickpea improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.